P2430201

curricuLAB[®] PHYWE

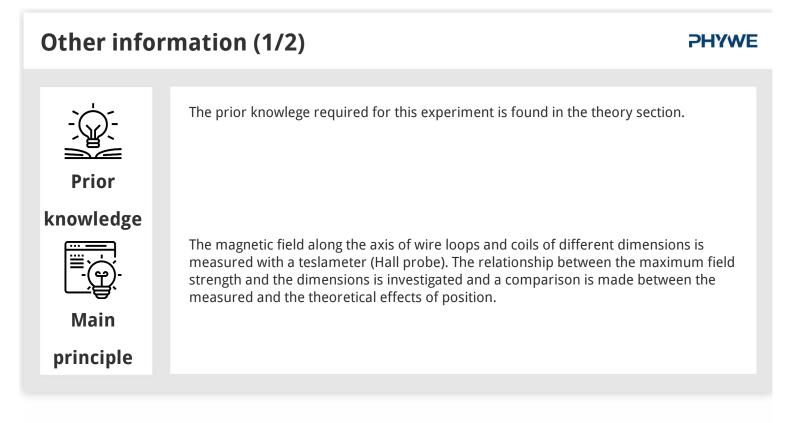
Magnetic field of single coils / Biot-Savart's law with a teslameter

Physics	Electricity & Mag	Electricity & Magnetism Magnetism				
Applied Science	Engineering	Electrical Engineering				
Difficulty level	PR Group size	D Preparation time	Execution time			
hard	2	10 minutes	20 minutes			
This content can also be found online at:						

http://localhost:1337/c/60141ee338ab09000357d957

General information

Application


PHYWE

Magnetic fields are widely used in different fields. From the magnets used on junkyards to transport old cars up to their use in particle accelerators magnetic fields produced by coils have many applications.

Fig.1: Experimental set-up

Other information (2/2)

PHYWE

objective

Tasks

The goal of this experiment is to investigate the magnetic field produced by a single coil.

- 1. Measure the magnetic flux density in the middle of various wire loops with the Hall probe and to investigate its dependence on the radius and number of turns.
- 2. Determine the magnetic field constant μ_0
- 3. Measure the magnetic flux density along the axis of long coils and compare it with theoretical values.

3/10

Theory (1/3)

From Maxwell's equation

$$\int_K ec{H} dec{s} = I + \int_F ec{D} dec{f}$$
 (1)

where K is a closed curve around area F, H is the magnetic field strength, I is the current flowing through area F, and D is the electric flux density, we obtain for direct currents ($\dot{D} = 0$), the magnetic flux law:

$$\int_{K}ec{H}dec{s}=I$$
 (2)

With the notations from Fig. 2, the magnetic flux law (2) is written in the form of Biot-Savart's law:

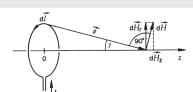
$$dec{H}=rac{I}{4\pi}rac{dec{l} imes
ho}{
ho^3}$$
 (3)

Theory (2/3)

$$dH=rac{I}{4\pi
ho^2}dl=rac{I}{4\pi}rac{dl}{R^2+z^2}$$
 (4)

 $\mathrm{d}\vec{H}$ can be resolved into a radial $\mathrm{d}H_r$ and an axial $\mathrm{d}H_z$ component.

The dH_z components have the same direction for all conductor elements \vec{dl} and the quantities are added; the dH_r components cancel one another out, in pairs.


Therfore, $H_r(z) = 0$ (5)

PHYWE

and $H(z) = H_z(z) = rac{I}{2} rac{R^2}{\left(R^2 + z^2
ight)^{3/2}}$ (6)

PHYWE

calculation of the magnetic field along the axis of a wire loop.

Theory (3/3)

PHYWE

along the axis of the wire loop, while the magnetic flux density

$$B(z) = rac{\mu_0 \cdot I}{2} \cdot rac{R^2}{\left(R^2 + z^2
ight)^{3/2}}$$
 (7)

where $\mu_0 = 1.2566 \cdot 10^{-6}$ H/m is the magnetic field constant. If there is a small number of identical loops close together, the magnetic flux density is obtained by multiplying by the number of turns n.

www.phywe.de

Equipment

Position	Material	Item No.	Quantity
1	PHYWE Power supply, universal DC: 018 V, 05 A / AC: 2/4/6/8/10/12/15 V, 5 A	13504-93	1
2	PHYWE Teslameter, digital	13610-93	1
3	Hall probe, axial	13610-01	1
4	Induction coils, 1 set (7 coils)	11007-88	1
5	Conductors, circular, set	06404-00	1
6	Meter scale, I = 1000 mm	03001-00	1
7	Digital multimeter, 600V AC/DC, 10A AC/DC, 20 MΩ, 200 μF, 20 kHz, -20°C 760°C	07122-00	1
8	Barrel base expert	02004-00	2
9	Support rod, stainless steel, I = 250 mm, d = 10 mm	02031-00	1
10	Distributor	06024-00	1
11	Right angle clamp expert	02054-00	1
12	G-clamp	02014-00	2
13	Lab jack, 200 x 200 mm	02074-01	1
14	Reducing plug 4mm/2mm socket, 2	11620-27	1
15	Connecting cord, 32 A, 500 mm, blue	07361-04	1
16	Connecting cord, 32 A, 500 mm, red	07361-01	2
17	Universal clamp	37715-01	1

PHYWE

Setup and Procedure

Setup and Procedure

Set up the experiment as shown in Fig. 1. Operate the power supply as a constant current source, setting the voltage to 18 V and the current to the desired value. Measure the magnetic field strength of the coils (I = 1 A) along the z-axis with the Hall probe and plot the results on a graph. Make the measurements only at the centre of the circular conductors (I = 5 A). To eliminate interference fields and asymmetry in the experimental set-up, switch on the power and measure the relative change in the field. Reverse the current and measure the change again. The result is given by the average of the measured values.

PHYWE

Evaluation

Task 1

At the centre of the loop (z=0) we obtain

$$B(0)=rac{\mu_0\cdot n\cdot I}{2R}$$
 (8)

Using the expression $B = A_1 \cdot n^{E_1}$ and $B = A_2 \cdot R^{E_2}$

the regression line for the measured values in Fig. 3 give, for the number of turns, the following exponents E and standard errors:

 $E_1=0.96\pm 0.04$ and, for the radius (see equation (8)) $E_2=-0.97\pm 0.02$

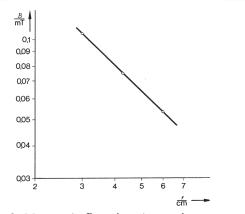
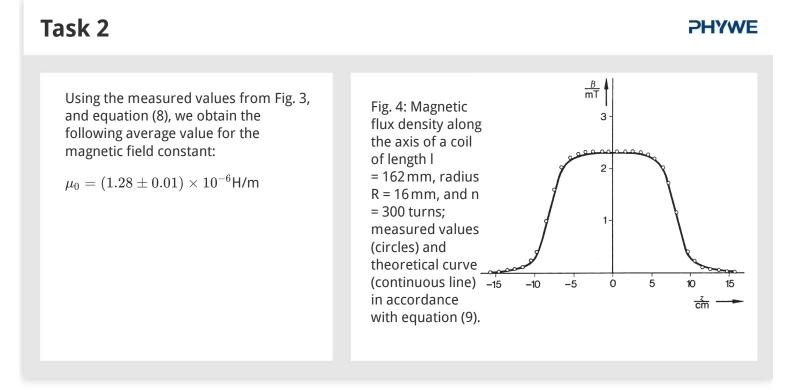



Fig. 3: Magnetic flux density at the centre of a single turn, as a function of the radius (current 5A).

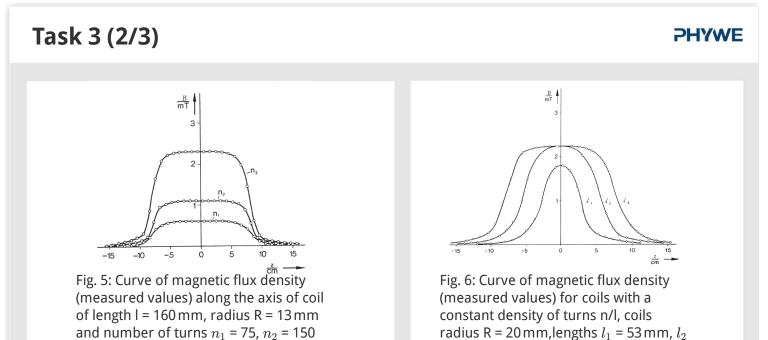
8/10

Task 3 (1/3)

PHYWE

To calculate the magnetic flux density of a uniformly wound coil of length l and n turns, we multiply the magnetic flux density of one loop by the density of turns n/l and integrate over the coil length.

$$B(z) = rac{\mu_0 \cdot I \cdot n}{2l} \cdot \left(rac{a}{\sqrt{R^2 + a^2}} - rac{b}{\sqrt{R^2 + b^2}}
ight)$$
 (9)


where a=z+l/2 and b=z-l/2

The proportional relationship between magnetic flux density B and number of turns n at constant length and radius is shown in Fig. 5. The effect of the length of the coil at constant radius with the density of turns n/l also constant, is shown in Fig. 6.

Comparing the measured with the calculated values of the flux density at the centre of the coil,

 $B(0)=rac{\mu_0\cdot I\cdot n}{2l}\cdot \left(R^2+rac{l}{2}
ight)^{-rac{1}{2}}\,$ gives the values shown in Table 1.

= 105 mm and l_3 = 160 mm.

Task 3 (3/3)

and n_3 300.

PHYWE

n I [mm]R [mm]B(0) [mT] meas.B(0) [mT] calc						
75	160	13	0.59	0.58		
150	160	13	1.10	1.16		
300	160	13	2.30	2.32		
100	53	20	1.81	1.89		
200	105	20	2.23	2.24		
300	160	20	2.23	2.29		
300	160	16	2.31	2.31		

Table 1: Comparison of the measured and the calculated values of the flux density.

10/10