Electrical conductivity of metals

Difficulty level

easy

This content can also be found online at:

Preparation time

45+ minutes

Group size

2

http://localhost:1337/c/6006ebcb93e22500031f5bbf

Execution time

45+ minutes

General information

Application

PHYWE

Electrical conductivity of metals has many applications in electro technics.

Other information (2/2)

PHYWE

The goal of this experiment is to investigate the electrical conductivity of copper and aluminium.

Learning

objective

Tasks

- 1. Determine the electrical conductivity of copper and aluminium by recording a current-voltage characteristic line.

2. Test of the Wiedemann-Franz law.

PHYWE

Caution:

Safety instructions

Keep the water level such, that the immersion heater is always sufficiently immersed, keep refilling evaporated water during the experiment – the heater will be destroyed by overheating, if the water level is too low.

Theory (1/2)

PHYWE

If a temperature difference exists between different locations of a body, heat conduction occurs. In this experiment there is a one-dimensional temperature gradient along a rod. The quantity of heat dQ transported with time dt is a function of the cross-sectional area A and the temperature gradient dT/dx perpendicular to the surface.

$$rac{\mathrm{d}Q}{\mathrm{d}t} = -\lambda A \cdot \left(rac{\partial T}{\partial x}
ight)$$
 (1)

The temperature distribution in a body is generally a function of location and time and is in accordance with the Boltzmann transport equation

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho \cdot c} \cdot \left(\frac{\partial^2 T}{\partial x^2}\right)$$
 (2)

Where ρ is the density and c is the specific heat capacity of the substance.

Theory (2/2)

PHYWE

After a time, a steady state

 $rac{\partial T}{\partial t} = 0$ (3)

is achieved if the two ends of the metal rod having a length l are maintained at constant temperatures T_1 and T_2 . respectively, by two heat reservoirs.

Substituting equation (3) in equation (2), the following equation is obtained:

$$T(x)=rac{T_2-T_1}{l}\cdot x+T_1$$
 (4)

Equipment

Position	Material	Item No.	Quantity
1	Heat conductivity rod, Cu	04518-11	1
2	Heat conductivity rod, Al	04518-12	1
3	Rheostat, 10 Ohm , 5.7A	06110-02	1
4	PHYWE Multitap transformer DC: 2/4/6/8/10/12 V, 5 A / AC: 2/4/6/8/10/12/14 V, 5 A	13533-93	1
5	Digital multimeter, 600V AC/DC, 10A AC/DC, 20 MΩ, 200 μF , 20 kHz, -20°C 760°C	07122-00	2
6	PHYWE Universal measuring amplifier	13626-93	1
7	Connecting cord, 32 A, 500 mm, red	07361-01	3
8	Connecting cord, 32 A, 500 mm, blue	07361-04	4
9	Connecting cord, 32 A, 1000 mm, red	07363-01	1

PHYWE

Setup and Procedure

Procedure (1/2)

- Perform the experimental set-up according to the circuit diagram in Fig. 2 (set-up in accordance with a 4conductor measuring method).
- Set the voltage on the variable transformer to 6 V.
- The amplifier must calibrated to 0 in a voltage-free state to avoid a collapse of the output voltage.
- Select the amplifier settings as follows: Input: Low Drift Amplification: 10⁴ Time Constant: 0

Fig. 2: Circuit diagram.

PHYWE

7/9

PHYWE

Procedure (2/2)

PHYWE

- Set the rheostat to its maximum value and slowly decrease the value during the experiment.
- Read and note the values for current and voltage
- The resistance, and thus the electrical conductivity, can be determined from the measured values.

Evaluation

PHYWE

PHYWE

Task 1 (1/2)

At room temperature the conduction electrons in metal have a much greater mean free path than the phonons. For this reason heat conduction in metal is primarily due to the electrons. The resulting correlation between the thermal conductivity λ and the electrical conductivity σ is established by the Wiedemann-Franz law:

 $\frac{\lambda}{\sigma} = LT$ (5)

The Lorenz number L, which can be experimentally determined using Equation (5), is established by the theory of electron vapour (for temperatures above the Debye temperature) to be:

 $L = rac{\pi^2}{3} \cdot \left(rac{k^2}{e^2}
ight) = 2.4 \cdot 10^{-8} rac{{
m W}\Omega}{{
m K}^2}$ (6)

k = Universal gas constant = $1.38 \cdot 10^{-23}$ J/K, e = Elementary unit charge = $1.602 \cdot 10^{-19}$ AS

Task 1 (2/2)

The electrical conductivity is determined by the resistance R of the rod and its geometric dimensions (I = 0.315 m,A = $4.91 \cdot 10^{-4} \text{ m}^2$).

$$\sigma = rac{l}{A \cdot R}$$
 (6)

From Equation (5) the following values result for T = 300 K and the λ from the second part of the experiment.

	R [10 ⁻⁶ Ω]	σ [$ m 10^7~(\Omega m)^{-1}$]l	$[10^{-8} \mathrm{W}\Omega\mathrm{K}^{-2}]$
Al	19.6	3.27	2.5
Cu	12.04	5.33	2.35

The Debye temperatures of copper and aluminium are 335 K and 419 K, respectively. Below the Debye temperature the ratio of the conductivity is smaller than given by Equation (5).

