Photometric law of distance - inverse square law

Physics

Light & Optics

Difficulty level

QQ Group size Preparation time

Execution time

This content can also be found online at:

http://localhost:1337/c/5f45a2879a658b00033e0335

General information

Application

PHYWE

Photometer

The applications of photometry can be found in:

- Chemistry: to measure the amount of organic or inorganic material in a solution, to determine nutrients in soils and so on.
- Astronomy: to determine characteristics and brightness of stars and other celestial bodies.

www.phywe.de

PHYWE

PHYWE

Safety instructions

For this experiment the general instructions for safe experimentation in science lessons apply.

Theory (1/3)

A punctual light source of luminous intensity (Candela/cd) emits a light flux Φ (Lumen/lm) throughout a solid angle ω . The luminous intensity in a solid angle element $d\omega$ results to

$$I = rac{d\Phi}{d\omega} \left[cd
ight]$$

For luminous sources extended in space (also such which emit no light by themselves, but which are reflecting), luminance B is given by :

$$B = \frac{dI}{d\alpha} \left[\frac{cd}{cm^2} \right]$$

If an area dA^* is illuminated by a luminous flux $d\Phi$, illuminance *E* (Lux/lx) is given by:

 $E=rac{d\Phi}{dA^{st}}\left[lx
ight]$

|--|

PHYWE

Theory (2/3)

Figure gives a schematic representation of the illumination of a surface element dA^* through a punctual light source *P*. The luminous intensity of the source is *I*and its distance from the surface element is *r*, the line perpendicular to the surface element points in the direction of the connecting line with the light source.

Schematic determination of the photometric law of distance

Theory (3/3)

The illuminance *E* is given by:

$$E=rac{d\Phi}{dA^*}=rac{d\Phi/d\omega}{d\omega/dA^*}$$
 .

With $d\omega = dA^*/r^2$ one obtains the equation:

$$E = rac{I}{r^2}$$

This equation describes the photometric law of distance. According to this, the illuminance *E*of a surface decreases proportionally to the square of distance *r*for a constant luminous intensity *I*.

Equipment

Position	Material	Item No.	Quantity
1	Cobra SMARTsense - Motion, 0,2 2 m (Bluetooth + USB)	12908-01	1
2	Cobra SMARTsense - Light, 1 128 kLx (Bluetooth + USB)	12906-01	1
3	measureLAB, multi-user license	14580-61	1
4	Lamp holder E 14,on stem	06175-00	1
5	Filament lamp 6V/5A, E14	06158-00	1
6	PHYWE Power supply, 230 V, DC: 012 V, 2 A / AC: 6 V, 12 V, 5 A	13506-93	1
7	Stand tube	02060-00	1
8	Barrel base expert	02004-00	2
9	Scale for demonstration board	02153-00	1
10	Bench clamp expert	02011-00	1
11	Screen, metal, 300 x 300 mm	08062-00	1
12	Holder for Cobra SMARTsense	12960-00	2
13	USB charger for Cobra SMARTsense and Cobra4	07938-99	2
14	Support rod, stainless steel, I = 250 mm, d = 10 mm	02031-00	2
15	Right angle clamp expert	02054-00	2
16	Support rod,stainl.steel, 100mm	02030-00	1

PHYWE

Additional equipment

Position Material

l Quantity

1 PC/Android tablet or iPad 1

PHYWE

Setup and procedure

Robert-Bosch-Breite 10 37079 Göttingen Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Setup (1/3)

PHYWE

Set up the equipment as shown.

Align the filament of the lamp such that it faces the Cobra SMARTsense-light. Adjust the sensor in such a manner that it remains oriented towards the lamp's filament when moved. Both of them must be mounted at the same height above the table.

Use one of the two support bases to set up the lamp.

Setup (2/3)

PHYWE

Cobra SMARTsense -Light

Use the second support base to attach the Cobra SMARTsense "Light" horizontally, facing the lamp.

The initial separation between the lamp and the sensor should be approximately 15 cm. In favour to do so, place the stand tube of the lamp with its end on the one meter marking and place the end of the sensor stand tube 15 cm away.

Clamp the CobraSMARTsense - motion at the end of the

Darken the room or shield the experiment from direct

Setup (3/3)

PHYWE

Cobra SMARTsense - Motion

Procedure

PHYWE

Switch on the Cobra SMARTsense "Light" by pressing the power button. Start the PHYWE measureLAB and ensure that Bluetooth is activated on the device. Choose the sensor "Light" in the sensor list and light intensity (E) as the measured value. Set 'distance' as the measured value on x-axis.

table.

sunlight.

To measure the path with the motion sensor, place the light sensor in the initial position (15 cm away from lamp filament). For instance, if the motion sensor gives a value of 0.70 m you would change the value to 0.85 (0.75 m + 0.15 m) to obtain the distance between the light sensor and the lamp.

Start the measurement by pressing on and move slowly (about 0.5 cm/s) the light sensor along the meter scale away from lamp filament. At a distance of approximately 70 cm you can terminate the measurement by pressing stop, as the luminous intensity has now become very low and in addition the diffuse light fraction is relatively large.

Evaluation (1/4)

PHYWE

The luminous intensity is plotted as a function of actual distance between the lamp filament and sensor.

Evaluation (2/4)

PHYWE

For further analysis of the inverse value:

- Create a channel conversion of the squared inverse value. Simply drag your measured values for distance d into the Data pool and type in the formula. Select the generated squared inverse value and your measured luminous intensity values.
- Choose the option diagram to plot the inverse value against the luminous intensity. In the displayed diagram, select the inverse value as x-axis.

10/12

Evaluation (3/4)	PHYWE
Fill in the blanks:	solid angle
in the direction. Since the surface area of a sphere is to the square of the radius, the illuminated area as it gets farther from the source. Hence, the luminous intensity is	increases luminous flux
proportional to the square of the distance between the surface and source.	inversely
Check	

Evaluation (4/4)

PHYWE

11/12

lide			Score / Total
Slide 18: Luminous flux			0/5
lide 19: Illumination of a surface			0/3
		Total Score	0/8
	Show solutions	Th A	

