Contact Us

www.spinq.cn

+86-755-23760210

sales@spinq.cn

Scan the QR Code to Follow Us

Public Account

Gemini Lab

Quantum Computing Experimental Platform

Quantum Computing Experiment Platform

Quantum computing is a new computer architecture founded on the principles of quantum mechanics, harnessing the superposition and entanglement of quantum systems to achieve parallel acceleration of computations. As the need for computational power continues to escalate, quantum computing technology has emerged as a strategic focal point in national strategies for information security and industrial competitiveness. In the foreseeable future, it is anticipated to exert profound influences on diverse fields including artificial intelligence, drug development, financial technology, and fundamental sciences.

The SpinQ Gemini Lab is a full-stack quantum computing experimental platform. It is based on the principles of NMR (nuclear magnetic resonance) quantum computing, equipped with advanced radiofrequency technology and miniaturized quantum systems. Capable of conducting real quantum computing experiments in a classroom environment, it is well-suited for use as experimental teaching equipment and a research platform for undergraduate and graduate students in higher education institutions.

Encompassing rich hands-on content such as hardware modules, parameter measurement, quantum control, pulse design, signal readout, and data processing.

Visualizing hardware modules, graphing experimental data, making complex experiments intuitive and easy to understand.

The experimental principles are applicable to all mainstream quantum computing technology paths, contributing to the cultivation of talent in quantum information.

Full-Stack Experimental

Provide a comprehensive set of teaching resources for quantum computing, including instructional content and experimental guidance, to meet the teaching needs of various experimental classrooms.

Product Advantages

Comprehensive in Content

The experiment includes the foundational principles of quantum computing, control techniques, quantum algorithms, programming languages, research topics, and underlying hardware.

Convenient Usage

With its compact size, maintenance-free operation, and room-temperature capability, experience real quantum computing in any classroom setting.

With visible internal structures and operable hardware modules, our quantum computer provides a unique opportunity to understand quantum information technology from a hardware perspective, making it an invaluable resource for users.

Stable Performance

Benefit from nuclear magnetic resonance, known for superior controllability and prolonged stability - leading the way in quantum computing reliability.

Comparison with Similar Products

	Gemini Lab	Other Similar Products
Real Quantum System	Yes	Yes
Degree of Control	High	Low
Experimental Phenomena	Intuitive	Not Obvious
Experimental Content	Full-Stack	Single
Adaptation Course Type	Variety	Single
Universality of Content	High	Low

Comparison with Simulator

	Gemini Lab	Simulator
Quantum Computing Hardware	\bigcirc	\otimes
Quantum System Parameter Measurement	\bigcirc	
Radio Frequency Pulse Control	\bigcirc	\otimes
Quantum Logic Gate Construction	\bigcirc	
Quantum Circuit Design	\bigcirc	\bigcirc
Real Dynamic Process	\bigcirc	
Quantum System Signal	\bigcirc	\otimes
Experimental Data Processing	\bigcirc	
Quantum State Reconstruction	\bigcirc	\otimes
Presentation of Quantum Algorithm Results	\otimes	\otimes

Product features

Quantum Computing Principles Experiment		
Nuclear Magnetic Resonance & Signal	Observe spin resonance phenomena and measure resonance frequency to understand the physical carrier of quantum bits.	
Rabi Oscillation	Observe transition oscillation phenomena, measure Rabi frequency, and explore the rules of RF field driving qubits.	
Qubits	Observe the quantum characteristics of nuclear spin and comprehend the physical image of qubits.	
Quantum Decoherence	Witness relaxation phenomena, measure decoherence characteristic time, and understand the concept of qubit lifetime.	
Quantum Control	Use the RF field to control the state of quantum bits and explore the principle of implementing quantum logic gates.	
Quantum System Initialization	Based on controlling quantum bits, implement the initialization process of quantum computing.	
Quantum Logic Gates & Circuits	Construct quantum gates based on RF pulses; perform quantum circuit computations based on constructed quantum gates.	
Quantum State Tomography	Process readout signals from the quantum system to obtain the output quantum state of the quantum circuit.	
Deutsch-Josza Quantum Algorithm	Implement Deutsch-Josza quantum algorithm in the quantum system to experience the parallel computing characteristic of quantum computing.	

Product features

Quantum Control Technology

Enhance your understanding of quantum control techniques through methods such as changing experimental samples, utilizing peripheral instruments, and designing pulse sequences. Including independent experiments such as nuclear magnetic resonance spin, spin echo, dynamic decoupling, and shape pulses.

Quantum Algorithm

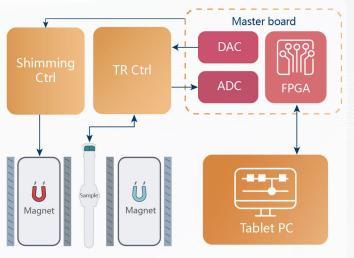
Learn various quantum algorithms through graphical programming and quantum programming languages, and implement experiments from the physical foundations in quantum systems.

Research-oriented Experiments

Offer various semi-open exploratory experiments, such as quantum optimization algorithms, quantum simulation, and optimization control. It can also serve as a research platform for quantum information.

Quantum Bit

¹H/³¹P atomic nuclear


n Bit Magnetic Field Strength ic nuclear 0.65 Tesla in 27.7 MHz

.

Size and Weight 991*396*222 (mm) 20 kg

Operating Conditions 0-40 °C 100-240 V AC

About Us

Founded in 2018

SpinQ is currently **the global leader in quantum computer sales.** We are a one-stop solution provider committed to **industrializing** and **popularizing** quantum computing.

Under our dual-wheel drive strategy of tech R&D and commercial implementation, we depend on practical superconducting quantum computer, desktop NMR quantum computer, quantum computing cloud platform, and application software for industrial layout. We empower various cutting-edge fields such as scientific research teaching, drug R&D, FinTech, artificial intelligence, and more. We collaborate with partners in building scenario-based solutions, bringing quantum computing into thousands of industries, making it a truly productive tool.

Development History

2018

August

Shenzhen SpinQ Technology Co., Ltd was established.

November

Completed the development of a large-scale NMR quantum computing cloud platform.

2020

January

Launched the world's first Desktop NMR Quantum Computer (2 qubits) "Gemini".

October

A new generation of general quantum computing cloud platform "Taurus" was officially launched.

December

Completed tens of millions of RMB in Series A financing.

Our Advantages

Top-notch quantum computing engineering product capabilities in the industry

The fastest quantum computing company to complete an international market layout

The first to create a milestone for the popularization of quantum computers to individuals

2022

January

Launched the world's first portable quantum computer "Gemini Mini".

March

Passed the national high-tech enterprise certification.

September

Completed nearly 100 million RMB in Pre-B round financing, accelerating the industrialization of quantum computing.

2019

April

Released the prototype of desktop NMR instrument with built-in 2 qubits.

2021

September

Launched Desktop NMR Quantum Computer "Triangulum" with built-in 3 qubits.

December

Our collaboration project with Huaxia Bank won the first prize of the "2020 People's Bank of China Financial Technology Development Award".

2023

Anri

Held a strategic conference to upgrade all three major businesses.