ELECTRONIC \& ELECTRICAL CIRCUIT LAB

Electronic circuit lab equipped with a main unit and 11 experiment modules.
Each module permits to realize several practical work.
Supplied with leads and user's manual.

ref. PSY2 101

EDUCATIONAL OBJECTIVES

- Studying by different modules of electrical \& electronical circuits commonly encountered

TEACHING RESSOURCES + PRACTICAL WORKS

MAIN UNIT PSY2101 INCLUDING

4 fixed DC supplies with output overload protection $+5 \mathrm{~V}-5 \mathrm{~V}+12 \mathrm{~V}-12 \mathrm{~V} / 300 \mathrm{~mA}$ on each output.
Dual DC power supply with output overload protection $\pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V} / 1 \mathrm{~A}$ continuously adjustable.
2 AC power supplies with output overload protection $0-9 \mathrm{VAC} / 500 \mathrm{~mA}$

Signal generator

Sine, square and triangle 10 Hz to 100 kHz .
-4 ranges $100 \mathrm{~Hz}-1-10-100 \mathrm{kHz}$

- Output impedance: 50Ω
- Output voltage : 9 Vpp (with 50Ω load),

18 Vpp (open loop).
$31 / 2$ digit digital voltmeter and ammeter
Range: 2V-200V - accuracy 0.3\%
Range 200~A - 2A - accuracy 0.5\%
Analogue voltmeter and ammeter
0 to 20 V DC - 0 to 100 mA DC - 0 to 1A DC 0 to 15 V AC - 0 to 100 mA AC - 0 to 1A AC
Speaker $8 \Omega, 0.25 \mathrm{~W}$ with driver circuit.
0.25 W potentiometers : $1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$.

Breadboard : 1680 tie-point breadboard on top panel can be easily put into and taken off (permutable).
Dim: $400 \times 300 \times 130 \mathrm{~mm}$. Weight: 5.8 kg

11 EXPERIMENT MODULES

Designed with a $215 \times 165 \times 30 \mathrm{~mm}$ solid body plastic housing, with electrical wiring printed on the front panel. An 8 -bit DIP switch, located on the right top corner allows the user to simulate faults. Each analogue module is delivered with 2 experiment manuals.

STUDENT BOOK

(supplied with each module)
A theoretic part, definitions, terminology,
characteristics curves, schemas, theoretical schemas, and wiring diagrams with link slots.

The functioning is explained in details.
An experimental part to guide step by step the student to do practical works: choice of measurement appliances, settings, measurement to do, blank tables to be filled, curves to be drawn.
Result commentaries, additional practical works

INSTRUCTOR BOOK

(supplied with each module)

Practical works presentation: purposes, manipulation interpretation Switches position to simulate troubleshooting.
Detailed and pedagogical solutions of practical works
Calculation shown in extenso. Moreover, the instructor will find technical complements, which can be distributed to students without any modifications.

DC voltage and current measurement.
Ohm's law. Power in DC circuit.
Series - Parallel network and Kirchhoff's law.
Thevenin's and Norton's theorems.
Maximum power transfer theorem.
RC circuit and transient phenomena. AC voltage and current measurement. RC, RL, RLC circuits.
Transformer characteristics.
Series and parallel resonant circuits. LC filter.
ref. ELEC1
Magnetic devices. Magnetic field.
ref. ELEC2
Drawing magnetic curves. Magnetic field strength. Lentz's and Faraday's laws.
ref. ELEC3
Ampere's rule
ref. ELEC4

Fleming's rule
 ref. ELEC5

Self induction. Mutual induction.
Magnetic flux detection by sensor and amplifier
ref. ELEC6
Diode characteristics.
Rectifier circuit half and full wave.
Filter circuit.
LC filters and RC filters in π. Zener diode characteristics. LED characteristics. Transistor characteristics NPN PNP Vce IB. Multimeter functions.
FET characteristics.
Triac UJT characteristics.
ref. ELEC7
One stage transistor amplifier.
AB class Push-pull - Voltage regulator - SCR power dimmer - Two stages amplifier - Relay characteristics - Touch controller switch.
ref. ELEC8
Two stages amplifiers by transformers.
Coupling - Push-pull output on speaker Wheatstone bridge.
ref. ELEC9
Photoresistor characteristics - Using a switch. Thermistor characteristics. Wheatstone using. Thyristor drived by thermistor.
3 stages amplifiers controled by microphone.
ref. ELEC10
Blocking oscillator.
Blocking oscillator with speaker output.
Astable multivibrator. LC resonant circuit.
Electronic birdcall circuit
ref. ELEC1 1

