Digital lab equipped with a main unit and differents experiment modules.
Each module permits to realize several practical works.
Supplied with leads and user's manual.

DIGITAL LOGIC LAB

13 EXPERIMENT MODULES.

Designed with a $215 \times 165 \times 30 \mathrm{~mm}$ solid body plastic housing, with electrical wiring printed on the front panel. An 8bit DIP switch, located on the right top corner allows the user to simulate faults. Solution for faults are listed in the experiment manual for user's reference. Comprehensive experiment and instructor's manual are supplied with modules and contains theoretical drawings, wiring drawings.
The experiment part has input signals, location of test points, tables to be filled up, comments and exercises.

MAIN UNIT

ref. PSY3101

PSY3101 MAIN UNIT WITH:

4 fixed DC supplies with output overload protection:
$+5 \mathrm{~V}-5 \mathrm{~V}+12 \mathrm{~V}-12 \mathrm{~V} / 300 \mathrm{~mA}$ on each output.
1 adjustable DC power supply with output overload protection: from 1.5 to $15 \mathrm{~V} / 500 \mathrm{~mA}$
3 fixed frequencies: $1 \mathrm{~Hz}, 50 \mathrm{~Hz}, 1 \mathrm{MHz} 0.01 \%$, fanout :
10 TL load

1 variable signal generator

6 ranges from 1 Hz to 1 MHz - Fanout: 10 TTL or CMOS load.
2×8 outputs, edge 0 ک 1 TL level
4 outputs: edge 0 ک 1 TL or CMOS
1 fixed AC output - 6 Vrms with overload protection
Thumbwheel switch, 2 digit, BCD code output, common point input.
$16 \times$ LED indicating high and low logic state
4 sets of independent 7 -segment LED display, with BCD.
$3 \times$ LED functioning as a logic probe.
1 speaker with driver circuit.
Dimensions : $400 \times 300 \times 130 \mathrm{~mm}$. Weight : 5.8 kg

ACCESSORIES SUPPLIED

Jumpers, leads.

1680 tie-point breadboard which can be easily put into and taken off (permutable with the modules).

13 EXPERIMENT MODULES

Logic gates circuits, transistors, TL and CMOS logic circuits. $\mathrm{TL} / \mathrm{CMOS}$ I/O voltage and current measurement experiments. Basic logic gate transmission delay measurement. AND, OR, NAND, NOR, XOR gate characteristics. Interface between $\mathrm{TL} / \mathrm{CMOS}$ and $\mathrm{CMOS} / \mathrm{TL}$.

ref. DIGITAL1

NOR NAND XOR gate circuits, reverser, comparator circuit experiments, Schmitt trigger, open collector gate circuits.

ref. DIGITAL2

Three-state gate circuit. Adder.
Arithmetic logic unit.
Bit parity generator.

ref. DIGITAL3

Adder. Subtractor. 2 and 3 inputs reverser.
BCD code adder circuit.
Bit parity generator with XOR gate.
10 to 4 bit decoder with TTL IC.

ref. DIGITAL4

4 to 2 bit encoder. 4 to 2 bit decoder.
Decoder circuit experiments
(decoding 7 -segment display with BCD code).

ref. DIGITAL5

10 to 4 bit encoder.
Multiplexer circuit experiments.
Digitally controlled analog
Multiplexer/demultiplexer circuits.
Bi-directional transmission with CMOS IC.

ref. DIGITAL6
Oscillator circuit with basic logic gates, with Schmitt trigger. Voltage controlled oscillator circuit, with 555 trigger. Monostable multivibrator and synchronous astable multivibrator.
ref. DIGITAL7

In the upper right corner, behind a locked hood by the teacher, a 8 -positions switch allows to simulate some material defects.

Variable duty ratio oscillator. RS, T, D, JK flip flop. Preset left/right shiff register circuit.
Noise elimination circuit.

ref. DIGITAL8

JK flip flop: asynchronous/synchronous, binaries up/ down bi-directional counters. Ring counter circuit, Johnson's counter circuit.
ref. DIGITAL9

JK flip flop: asynchronous counter: decimal, divide by N , preset synchronous binary/decimal.
Constructing ROM memories with diodes, RAM memories with D flip flop.
Constructing EPROM

ref. DIGITAL10

Constructing 64 bits RAM circuit. Constructing Electronic EPROM circuit

ref. DIGITAL1

Construction dynamic scanning counter with single chip microprocessor. 8- bit analog/digital converter circuit.

ref. DIGITAL1 2

Digital/analog converter circuit, unipolar and bipolar.
3 digits analog/digital converter circuit.

ref. DIGITAL1 3

